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By analyzing recent microscopic many-body calculations of few-nucleon systems and
complex nuclei performed by di erent groups in terms of real istic nucleon-nucleon (NN)
interactions, it is shown that NN short-range correlations  (SRCs) have a universal char-
acter, in that the correlation hole that they produce in nucl ei appears to be almost
A-independent and similar to the correlation hole in the deu teron. The correlation hole
creates high-momentum components, missing in a mean- eld ( MF) description and ex-
hibiting several scaling properties and a peculiar spin-is ospin structure. In particular,
the momentum distribution of a pair of nucleons in spin-isos pin state ( ST) = (10), de-
pending upon the pair relative ( ke ) and center-of-mass (c.m.) ( K¢:m: ) momenta, as
well as upon the angle between them, exhibits a remarkable p  roperty: in the region
kiee & 2fm 1 and Kgm: . 1fm 1, the relative and c.m. motions are decoupled and
the two-nucleon momentum distribution factorizes into the deuteron momentum distri-
bution and an A-dependent momentum distribution describin g the c.m. motion of the
pair in the medium. The impact of these and other properties o f one- and two- nucleon
momentum distributions on various nuclear phenomena, on ab initio calculations in
terms of low-momentum interactions, as well as on ongoing ex perimental investigations
of SRCs, are brie y commented.
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1. Introduction

It is well known that many low-energy properties of nuclei can be sacessfully ex-
plained in terms of the independent motion of nucleons in a MF createdby their

mutual interaction (see, e.gl). Recently, however, it became possible to investi-
gate nuclear structure at high values of energy and momentum trasfers, probing
inter-nucleon distances of the order of the nucleon radius'( 1fm) (see e.¢? and

references therein quoted). This would make it possible to answer tgstanding

guestions concerning the structure of nuclei at short distancese.g.:

(1) what are the quantitative limits of validity of the MF picture of nuclei?

(2) Does the strong short-range repulsion characterizing mode NN interac-
tions®{’! manifest itself in strong NN SRCs in the nuclear medium, i.e.strong
deviations from the independent particle motion (IPM) at short inter-nucleon
distances? Are SRCs limited to two-nucleon correlations, eminiscent of the
ones occurring in the deuteron, or many-nucleon SRCs shouldlso be consid-
ered?

(3) Do nucleon and meson remain the dominant e ective degrees dfeedom (d.o.f.)
in the short-region domain of nuclei, or quark and gluon d.d. have to be taken
explicitly into account?

(4) Do the details of the short-range structure of nuclei a ect tnconventional nu-
clear processes like, e.g., the structure of cold hadronic atter at high densities
or high-energy processes like nucleon-nucleus and nuclenscleus scattering at
relativistic energies?

Unveiling the details of the short-range structure of nuclei is a furdamental task of
nuclear physics. As a matter of fact, it should be kept in mind that the strong re-
pulsive core in the NN potential, resulting from the analysis of NN elasic scattering
data, is introduced by means of various form factors that leave a ertain degree of
arbitrariness, leading to di erent short-range behaviors of various NN interaction
models. Moreover, elastic on-shell NN scattering cannot in principledetermine the
details of the NN interaction in medium, because two nucleons that egerience in-
teraction with surrounding partners, are o -the-energy shell. As a result, a family
of di erent phase-equivalent potentials can be derived (see, e &) that may pro-
duce di erent behaviors of the nuclear wave function at short distances (see e.g?).
It should also be stressed that recentib initio many-body approaches (e.g. the Uni-
tary Correlation Operator? or the No-Core Shell ModeF! ones) that successfully
describe many low-energy properties of nuclei, are based upon vaus renormaliza-
tion group (RG) methods (see e.g. Ref418) producing phase equivalent soft NN
interactions allowing one to readily diagonalize the many-nucleon Hamilbnian that
would be extremely di cult to diagonalize by using the original bare inte raction. In
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these approaches, if high-momentum properties have to be evalted it is necessary
to evolve high-momentum operators within a low-momentum theory, which is no
easy task, though important progress is being done recentdZ™ It is not the aim
of this review to discuss these approaches, as well modern manytly theories (for
a recent review see Ret) based upon e ective interactions derived from chiral
perturbation theory (see e.g®¥), where short-range dynamics is described in terms
of contact interactions amongst nucleons. In the present repdrwe focus on the ef-
fects produced by the free short-range NN interaction on varios nuclear properties
and phenomena, i.e. we focus on SRCs, whose theoretical and exipeental investi-
gations are ultimately aimed at providing information on the details of in-medium
short range NN dynamics.

The importance of studying SRCs was stressed more than fty yees ago (see
e.g?L22) put it was only recently that, thanks to the enormous progress nmade by
many-body theories and experimental techniques, the theoretial and experimental
studies of SRCs were placed on robust grounds.

This report is mainly addressed at providing a critical overview of re@nt theo-
retical calculations demonstrating a universal character of SRCsin that: (i) in co-
ordinate space they produce in the two-nucleon density at small riative distances
a correlation hole (a region not accessible to nucleons), exhibiting, @art from nor-
malization factors, very mild dependence upon the atomic weightA and essentially
resembling the correlation hole in the deuteron; (ii) the correlation tole, in turn,
generates in the momentum distributions high-momentum componets, missing in
MF momentum distributions, and also exhibiting, to a large extent, independence
upon A and several interesting scaling properties. Our report is oganized as follows:
in Section[2 a review is presented of modern many-body approachés the calcula-
tion of nuclear properties in terms of realistic NN interactions and their prediction
about the short-range structure of nuclei; Sectioi’8 shows howtte action of SRCs
a ects the number of NN pairs in a given spin (S) and isospin (T) state (ST); an
exhaustive illustration of the properties and spin-isospin structure of the one-body
momentum distributions, related to to the spin-isospin structure of SRCs is pre-
sented in Sectior#; calculations of two-body momentum distributiors are reviewed
in Section[d, and one- and two-nucleon spectral functions are brig discussed in
Section[®; the Conclusions are presented in Sectidg 7.

2. Ab initio solutions of the nuclear many-body problem and
theoretical predictions of SRCs in con guration space

2.1. The standard model of nuclei

A description of nuclei in terms of quark and gluon d.o.f. implies the soltion of
non perturbative QCD problems, a very di cult and yet unsolved tas k. However,
as in the case of various many-body systems composed of particleaving their own
structure, many-nucleon systems could be viewed as systems obipt-like particles
interacting via proper e ective interactions that incorporate the leading d.o.f. of the
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system that, in case of nuclei, are the nucleon and exchanged basones. However,
the reduction of a eld theoretical problem to a non-relativistic pot ential description

generates two-, three-,: :, A-body interactions, so that the general potential energy
operator assumes the following form

X
V(xl;xg;xg; I Xa) = Un(X1; 10 Xn); (2)
n=2
wherex; f rj;si;ti;g denotes the nucleon generalized coordinate, including spa-
tial, spin and isospin coordinates. The relative weight of the various omponents
in Eq. () has been estimated many years ago in Re®3 arguing that the relative
strength between two- and n-body interactions should obey the following qualita-
tive relation

. vy (2 .
(n  body potential) ' Y (two  body potential); (2)

where vy denotes the average nucleon velocity in a nucleus and the velocity of
light. Taking vy ' 0:1c, one is led to the conclusion that the two-nucleon interaction
is the dominant one. Though such a statement is qualitatively correg, it is nowadays
well established that three-nucleon potentials have to be consided in order to
explain the ground-state energy of light nuclei?#26) with four-nucleon interactions
playing only a minor role?# (for a recent review on three- and more-nucleon forces see
Ref2l), Therefore the non-relativistic Schredinger equation assumeshe following

form
2 3
X p2 X X A A A
4 2n; + o(Xi; X)) + Oa(Xi; X Xk)®  f(fxga) = Eff £ (Fxga)(3)
i N i<j i<j<k
where fxga f Xi1;X2;X3;:::; Xag denotes the set of A generalized coordinates

(the spatial coordinates satisfying the condition iAzl ri =0) and f denotes the
complete set of quantum numbers of statef . Eq. (@) will be referred to as the
Standard Model of nuclei and in what follows we will be mainly interested in the
ground-state wave function £_, 0. Once the interactions are xed, Eq. (3)
should be solvedab initio, i.e. without any signi cant approximation which could
mask or distort the main features of ,. In what follow we will consider modern
2N bare interactions having the following general form

X (p) ; ;
®2(Xi5Xj) = v (r; )6 rioJoriorl 4
p=1

like, e.g., the AV18® (m = 18) and AV8 ® (m = 8) interactions, whose main com-
ponents are:

1 . A@ _ . AB® — L A® -
o =1,07=; ;0= ;0¥=Ci N
5 . A® _ :
Oi(j) Si; Oi(j)—éij i ®)
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with
S =3(f Dy ) g (6)

As for 3N potentials, several models have been proposed in ordeo treproduce the
binding energy of few-nucleon systems, that are underbound by kmout 0:2 0:3
MeV per particlg, when only 2N inﬁgractions are used (seepe.f,s.). Within the MF

approximation, i ®2(Xi;Xj)+ g Pa(XiiXj;Xk) ) i U(xi), the ground-
state solution of Eq. (3) is an antisymmetrized product of single paticle wave
functions , i.e.
Y
ofxga))  o(fxga)= A (Xi) = opon(fXga); (7)

where opon (fXga) is a Slater determinant with zero particle, zero hole (Op-Oh) ex-
citations, i.e. with all states below the Fermi (F) level occupied and those above it
empty ( , =0if ;> £). The general solution of Eq. [3) includes, on the oppo-
site, a huge number of Slater determinants describingip-nh excitations generated
by SRCs

o(fXxga) = Co opon(fXga)+ €1 1p1n(fXga) + G2 2pon(fXga) + :::: 8)

Ab initio direct solutions of Eq. (3) in terms of bare realistic interactions arepossible
in the case of few-nucleon systems (A=3, 4) within several approghes (see e.g.
Refs?B2) For complex nuclei the fully ab initio solutions are still dicult to
obtain, but for A 12 ground-state energies and excitation spectra were obtained
with the AV18 NN interaction plus 3N potentials, by means of the Green Function
Monte Carlo (GFMC) method (see e.g. Ref¥®); for 180 the Variational Monte Carlo
(VMC) method has been used®® and for A 16 the cluster expansionapproach has
been adopted with succes4?%l The picture that emerges from these calculations
is a structure of the ground-state wave function in the following fam

o(fxga) = F(fxga) o(fxga); 9)
where
Y vy #
F(fxga)= S fj(xi;x)=$ £ (ry )OS (10)
i<j i<j n=1

is a correlation operator introducing SRCs into the MF wave functions o, S is a
symmetrization operator, and Oi(j”) is the same operator appearing in Eq.[(#). It can
be seen that the many-body wave function exhibits a rich correlatiom structure, the

dominant SRC e ects arising from the short-range repulsion and the intermediate
tensor attraction.
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2.2. The one- and two-body densities and SRCs

Once the many-body wave function ¢ is at disposal, the relevant quantities of
interest are the n-body density, in particular:
1. the one-body non-diagonal spin-isospin independent density:
z Y
ri;rd)=A o(ri;fraga 1) o(r$;frga 1) dry; (12)
i=2

2. the two-body non-diagonal spin-isospin independent density

z

AA 1 Y
(rurdirairg) = AR 1) 5 ) o(ruitaifrga 2) o(r}irdifroa 2)  dri; (12)

i=3

3. the non-diagonal spin-isospin dependent two-body density
z
X

sy urdirard) = ¢ (frga) PP by (ruirfiraird) ¢(Fe%a)dX; (13)

i<j

where d X QiA:l dEidEiO and the non-diagonal two-body density operator is

Y
b (risrdirar) = (& ra) (g r2) (@ r}) (¢ r9) (e €Q): (14)
k& fij g

Here N; and N, denote the two nucleons in state §T) and Iﬁijs(T) is a projection
operator in the state with spin (isospin) S(T). The one-body diagoral (r 1), two-
body diagonal (ry;r3), half-diagonal (rq;ro;r?) and (NslTN)Z(rl;rg;ri’) densities
can easily be obtained from Eqgs.[(I2),[(T13) and{14), by inserting pper -functions
into the integrals and properly generalizing the operator [12) (seeRef%2).

Let us consider the diagonal two-body density

X
(riira)=  dry(rira) = (FrersRem:); (15)
ST

where the relative (rel) and center-of-mass (c.m.) coordinates are

rq+r
lpet =71 2 I Roem: = % R; (16)
and the following relation holds
z z
X X AA 1)
(ri;ro)dridr, = (NslTN)z(rl;rz)drldrz = N(NslTN)2 = T(17)
ST ST
where N(NSIT’\;Z is the number of NN pairs in state (ST). The relative and c.m.

two-nucleon densities cag then be de ned as foIIowsZ

rel (1) = (r;R)dR cm: (R) = (r;R)dr: (18)
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The knowledge of the one- and two-nucleon densities allows one to Icallate various
nuclear properties, e.g. the ground-state energy and the moméwm distributions.

The various spin-isospin dependent and independent densities hayeeen calculated
by various authors in terms ofab initio or, anyway, realistic solutions of Eq. [3) with
bare NN realistic interactions. These, which will be discussed in the ne Section,
provide a very clear de nition of SRCs and their e ects on NN densities in nuclei.

2.3. The correlation hole in few-nucleon systems and complex
nuclei

Ab initio calculations with bare realistic interactions show that, apart from an obvi-
ous normalization factor counting the di erent number of pairs in di erent nuclei,

ANL-P-20,654
T T T T T T T T

Pl Pl (™)

r (fm)

Fig. 1. The two-body density distribution of  pn and pp pairs in 160 corresponding to mean- eld
(MF) and correlated (v ) wave functions obtained within the Variational Monte Carl 0 approach
with AV14 NN interaction plus 3N forces (Figure reprinted fr  om.39 Copyright (1992) by the
American Physical Society).

the relative two-body density ¢ (r) and its spin-isospin components ngNz(r) ex-

hibits at r . 1:5fm a sharp damping with respect to the analogous MF density.
This is exactly the correlation hole previously mentioned; it is illustrated in Fig.
for the nucleus of0. The correlation hole is generated by the cooperation of
the short-range repulsion and the intermediate-range tensor ataction of the NN
interaction, with the tensor force governing the overshooting atr * 1:0fm in the
np distribution. Figs. 2l illustrate the universality of the correlation h ole, i.e. its
independence uponA. These Figures also demonstrate that di erent many-body
approaches, ranging from the GFMC to proper cluster expansion rathods, which
may give di erent results for the ground-state energy, but predict, practically, the
same behavior of the correlation hole. In order to be able to obtain iformation
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Fig. 2. (Left ): the relative two-nucleon density in  #He (Eq. (I8) with ¢ (r)  C(r)) calculated
within six dierent ab initio many-body theories using the AV18 interaction yielding pra ctically
undistinguishable results. (Figure reprinted from. 43! Copyright (1992) by the American Physical
Society). (Right ): the relative two-nucleon density (normalized at r ' 1fm ) in 2H, 3H, “He
and “He for NN pairs in relative S=0 and T=1 state. ~ Ab initio calculations within the method
of Ref3% and Av8 Q interaction. € (Figure reprinted from. 24 Copyright (2011) by the American
Physical Society).

Fig. 3. The two-nucleon density (Eq. (1§ with rel (1) @ (r)) in 12¢, 180, and 4°Ca. The
separate contributions of pp and nn densities are also shown. The total density (full line) is gi ven

by @(r) = ézn) (ry + 2 E)zp) (r) because E)zp) (r) = E,zn) (r). Ground-state wave functions from
the number-conserving linked-cluster expansion calculat ion of Ref., %I Av8 0 interaction. € (After
Ref43)).

about this important feature characterizing the relative NN motion in medium, we
have rst of all to shift to momentum space, expecting: (i) an increase of nucleon
high-momentum components in the ground-state wave function, if) peculiar mo-
mentum con gurations that are missing in a mean- eld description, and, eventually,
(iii) a variation of the spin-isospin structure of the ground-state wave function. Let
us start by discussing the spin-isospin structure of nuclei and howit is a ected by
SRCs.
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Fig. 4. (Left ): the relative two-nucleon density (Eq. (18 mormalized at r ' 1fm) in 2H, 4He,
6Li and 160 obtained in Ref. 48 within the VMC method and AV18 interaction. (Figure reprint ed
from.48! Copyright (1996) by the American Physical Society). ( Right ): the two-nucleon density

(Eq. (I8) with ¢ (1) @ (r))) obtained with ab initioc wave functions for 3He and “He and
within the number-conserving linked-cluster expansion of Ref#Ll and the AV8 0 interaction € for
12c, 160 and °Ca .

3. The spin-isospin structure of the nuclear ground state an d

SRCs
3.1. The number of spin-isospin pairs in a nucleus

The quantum numbers that characterize a two-nucleon pair in a nuteus are the
relative orbital momentum L, the total spin S and the total isospin T . Pauli principle

requires that L + S + T= odd number In a pure shell-model picture andA 4
L=0, so that (ST)=(10) and (01), whereas for A > 4 we can have both L even,
with (ST)=(10) and (01), and L odd, with (ST)=(00) and (11). The deviations
from the shell model originating from SRCs, are accompanied, iiA 4 nuclei, by
the creation of (00) and (11) states, and in complex nuclei by a redction of the

number of (01) and (10) states in favor of (11) and (00) statesThe number of pairs
in di erent ( ST) states in several nuclei given by

z

Nty = dridry (st)(raire) (19)

and calculated by di erent groups, is reported in Table [T; it can be sen that: (i)
SRCs do not practically a ect the state (10), but appreciably reduce the state (01),
in favor of the (11) state; this is ascribed to a three-body-like mebanism origi-
nating from the tensor force#*4¢ jllustrated in Fig. §] tensor correlations between
particles "2" and "3" generate a spin ip of particle "2", that gives r ise to the
state (11) between particles "2" and "1" ; (ii) as in the case of the mrrelation hole,
there is again a general agreement between the results by di erérgroups using
di erent many-body approaches, namely: the VMC with various Argonne interac-
tions, in Ref.#8 the correlated Gaussian basis approad¥ with the V8 © interaction,
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(ST)

Nucleus (20) (01) (00) (12)
2H 1 - - -
SHe IPM 1.50 1.50 - -
SRC* || 1.488 | 1.360 | 0.013| 0.139
SRC# 150 | 1.350 | 0.01 | 0.14
SRC# || 1.489 | 1.361 | 0.011| 0.139
“He IPM 3 3 - -
SRC* 2.99 257 | 0.01 | 043
SRC* 3.02 25 0.01 | 0.47
SRC* || 2.992 | 2,572 | 0.08 | 0.428
160 IPM 30 30 6 54
SRC* 29.8 275 | 6.075| 56.7
SRC* || 30.05| 28.4 | 6.05 | 555
OCa || IPM 165 165 45 405
SRC* || 165.18| 159.39| 45.10| 410.34

Table 1. The number of pairs N(st), EQ. (L9}, in various spin-isospin states in the independen t
particle model (IPM) and taking into account SRCs within di erent many-body approaches (see
text) with realistic interactions (AV18 and AV8'). (Table r eprinted from Ref. 42! Copyright (2013)
by the American Physical Society)

in Ref./#¥ the hyperspherical harmonic variational method with the AV 18 inter-

Fig. 5. The three-body mechanism leading to the increase of t he number of pairs in ( ST) = (11)
state (After Ref. 44), (Figure reprinted from Ref. 44/ Copyright (2011) by the American Physical
Society).

action in Ref.;3% the ATMS method of Ref3Y with the AV8 ? interaction and the
linked-cluster expansion of Re® with the AV8 ° interaction, in Ref.42
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4. One-body momentum distributions and SRCs
Let us now discuss how and to what extent SRCs a ect the one-bogd momentum
distribution, i. e. the Fourier transform of the non-diagonzal one-body density

1
AR )®
herenN:N2 js the two-body momentum distribution to be discussed later on, and
na(ki)dki =1, which is the normalization adopted in the rest of the paper.

na(ky) = e Kia D (1 dradrd= nNiNe(ky;ky) dko (20)

4.1. General de nitions and two-nucleon SRC (2N-SRC)
con gurations

SRCs considerably increase the higB—momentum content of the orReody momen-
tum distributions through the term i:z Cn npnh » IN EQ. (B), i.e. via the popu-
lation of np-nh states with momentum much higher than the Fermi momentum
ke ' 1:4fm 1. SRCs, moreover, generate peculiar wave function con guratios

Fig. 6. (a): the momentum distribution in 160 calculated with di erent NN interactions and
theoretical approaches: RSC; 48! Av14;59! Avg'. 41l The phenomenological distribution of Ref. 42! is
also shown (CS) and 2H denotes the deuteron momentum distribution. (  b): the proton momentum
distribution of di erent nuclei calculated within di eren t many-body approaches with equivalent
NN interactions, namely the AV18 one, in the case of 2H and 3He, and the AV8 9 one, in the case
of 4He, 160, and 4°Ca. Hereafter the notation jkij k will be adopted. (Figure reprinted from. 42
Copyright (2013) by the American Physical Society).

that are missing in a MF description*J As a matter of fact, since momentum con-
servation requires that

ki =0 (21)
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a nucleon with high momentumk; in a MF con guration is expected to be balanced
by the rest of the (A 1) nucleons, i. e.

x k
. , T 1.
kl ) kl I(I A 1! (22)
whereas in a 2N-SRC con guration one has
X
k1' kz Ka 2= ki "0 (23)

3
Therefore 2N-SRCs can be de ned as those con gurations of a paof nucleons
characterized by high relative and small c.m. momenta. The quantitative meaning
of such a statement will be discussed later on.

4.2. Recent calculations of the one-body momentum distribution

A recent systematic analysis of realistic calculations ofia (k) for A=2, 3, 4, 16, and
40 has been presented in Ré® The results for 180, performed by di erent groups,
is shown in Fig.[8@), which is aimed at illustrating the convergence of di erent
approaches that use similar NN interactions, whereas Fig[lé&{) shows that the
high-momentum part of na (k1) of di erent nuclei exhibits a qualitative universal

scaling behavior. This point will be discussed on a more quantitative legl in Section

43.

4.3. The probability of MF and SRC con gurations

The ground-state wave function ¢, solution of Eq. (3) describes both MF and
correlated-nucleon motions. The latter, in turn, includes both long and short-
range correlations; long-range correlations (LRC) manifest therselves mostly in
open shell nuclei, and are responsible for con guration mixing resulhg in partial

occupation of states which are empty in a simple independent particlenodel, with

small e ects, however, on high-momentum components; SRCs, othe contrary, gen-
erate high virtual particle-hole excitations even in closed-shell nukei, and strongly
a ect the high-momentum content of the wave function. Therefore, assuming that
the momentum distributions could be extracted from some experimatal data, we
have to gure out a clear cut way to disentangle the momentum conent generated
by the MF and LRCs from the one arising from SRCs. Denoting byfj f 1>gthe
complete set of eigenfunctions of nucleusy 1) described by the same Hamiltonian
of nucleus A, and using the completeness relation

x A1l A 1
it >< ¢ =1, (24)
f =0

the one-nucleon momentum distribution can be written as follows®

na(ki) = ngr(kl) + Nex(K1); (25)
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where
@ )3ngr(kzl): ,
_ &K Mgy Lt (Friga 1) o(ruifriga 1)Y\ ar; . (26)
f=0; 1 i=2
and
@ )3nex(§1): .
S Lo Do 1) o(riifriga 0" a e
f60; 1 i=2

Here the sum overf stands also for an integral over the continuum nal states that
are present in Eq. [Z4). We see that the momentum distribution canbe expressed
through the overlap integrals between the ground-state wave faction o of nucleus
A and the wave function §A Y of the state f of nucleus (A 1). The separation of
the momentum distributions in ng, and ney is particularly useful for A = 3; 4 nuclei,
i.e. when the excited states of A 1) are in the continuum. For complex nuclei,
where many discrete hole excited states are present, it is more ceenient to use
another representation where the particle-hole structure of tke realistic solutions of

Eq. @) is explicitly exhibited by Eq. (8). Within such a representation , one ha8%/52

na(ki) = no(ki) + ni(ky); (28)
where
(2 )®no(ky) =
Z Z
X , s 2
= gkiTagr {1 §A Yo(friga 1) o(riifriga 1) dri  (29)
f Foa : i=2
(2 )3 ni(ky) =
Z Z
X _ Y 2
- ¢iliary A P (frign 1) olraifriga ) dr: (30)
f>F; 1 i=2

The summation overf in Eq. (29) includes all the discrete shell-model levels below
the Fermi level in (A 1) ("hole states" of A), and in Eq. (B0) it includes all the
discrete and continuum states above the Fermi level created by BCs. In a fully
uncorrelated MF approach, one has

X
na(ky) = no(k)) = j (ko)i*;  nu(ka)=0: (31)
F
The modulus squared of the overlap integral represents the weigtof the ground
and excited virtual states of (A 1) in the ground state of A, so that the quantities
z

1 1
Pgro) = Ngro) (K1) dK1  Pex) = Nex(1) (K1) dKy; (32)

0 0
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Fig. 7. The proton momentum distribution n,‘l(kl) na (k) and its separation into the uncor-
related and correlated contributions, Eqgs. (25-30)L]in A=3 (wave function from Ref., Y Av18
interaction), A=4 (wave function from Ref., Bl Av80 interaction), A= 16 (wave functions from

Ref. 21 Av8 0 interaction), and A0 (wave function from Ref., & AV8 0 interaction). The values

of the probabilities Pgr o =4 k2dknfy (k) and P2 @ =4 k2 dknBy, Eq.(BZ), are listed in

Table Pland the partial probabilities, Eq. (34[L_n Table 3. (I Figure reprinted from. 42 Copyright
(2013) by the American Physical Society)

with
Pgro) * Pexy =1; (33)

yield, respectively, the probability to nd a MF and a correlated nucle on in the
range 0 ki 1 ;they can therefore be assumed as the MF and SRC total prob-
abilities. It is clear that both low- and high-momentum components catribute to
mean- eld and correlated momentum distributions but, as it should be expected,
Ngr) (Nex(yy) Should get contribution mainly from low (high) momentum compo-
nents. This is clearly illustrated in Fig. [/] where the proton momentum distributions
of A=3, 4, 16, and 40 nuclei are shown with the separation into the Mr and corre-
lation contributions: it can be seen that, starting from k & 2fm 1, the momentum
distributions are dominated by the correlated part. The calculated values of Py, )
and Pg,(1) for several nuclei are listed in Table[2. Assuming thatn'g1 and nTl
could be obtained from some measurable cross section, it might wellebthat only a
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MEAN FIELD AND SRC PROBABILITIES
Nucleus P otential Pgr Pex
3He0 Av18° 0.677 0.323
4He3lB2l | RSCE AVE® 0.8 0.2
Nucleus P otential Po P
1604l vg'e 0.8 0.2
per-c vg'e 0.8 0.2
Table 2. The proton MF, PP = del ng o (K1), and SRC, P{ ) = del b (K1), prob-

abilities, Eq. (32) in various nuclei obtained from AV18 an d AV8' interactions. (Table reprinted
from.42! Copyright (2013) by the American Physical Society).

2H 3He(p) 4‘He 160 40Ca

k1 P Pgr Pex Pgr Pex F)0 Pl F)0 Pl

00| 1.0 0:7 0:3 0:8 0:2 0:8 0:2 0:8 0:2

05| 03 0:3 0:2 0:5 0:1 0:7 0:2 0:7 0:2

1.0 | 0:08 | 0:03 | 0:07 0:1 0:1 0:2 0:1 0:2 0:1

1:5| 0:06 | 0:005| 0:04| 0:008 | 0:08 | 0:008 | 01 0:01 01

2.0 | 0:04 | 0:002| 0:02| 7 10 # | 0:06 | 6 10 # | 0:06 | 3 10 * | 0:07

Table 3. The values of the proton partial probability, Eq. (3 [4), for 3He, “He, 60 and 4°Ca,
calculated for dierent values of the momentum  k; (in fm 1) with kI = 1 . (Table reprinted
from.42! Copyright (2013) by the American Physical Society).

limited range of momenta is available experimentally, in which case it is uskl to
de ne the partial probabilities

Z k+
1
Poay(k;) =4 ) Noqy (K1)kZ dky (34)

i.e. the probability to observe a MF or a correlated nucleon with momenum in the

rangek, ki ki . The calculated values ofPON(i) (k, ) are given in Table[3.
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Fig. 8. The various spin-isospin contributions to the proto  n distributions in  3He, 4He, %0 and
40Ca (Eq. (BZ)). Wave functions as in Fig. 6 {Figure reprinted  from.%2! Copyright (2013) by the
American Physical Society)

4.4. The spin-isospin structure of the one-body momentum
distributions

By introducing the spin-isospin dependent half-diagonal density mérix
NiNz(p - r 9.1 >), the one-body momentum distribution can be expressed in terms

(ST)
of its various spin-isospin components as follov#s
X Za x £
f 0
na(ky) = nfT)(kl) =  drydrd¢ Ko (ra rg) dr, (NSlTN)Z(r 1;19:1,):(35)

(ST) (ST)

In Ref#? the spin-isospin dependent half-diagonal two-body density has ken
calculated for A=3, 4, 16 and 40, and the various spin-isospin confbutions to na (k)
have been obtained as shown in Fid.]8. It appears that: (i) the conibution from
the (00) state is negligible, both in few-nucleon systems and compleruclei; (ii)
the contribution from the (11) state in 3He and“He is small, both at low and large
values ofk, but it plays a relevant role in the region 1:5. k. 2:5fm 1; (iii) in the
proton distribution of 2He the (01) contribution is important everywhere except in
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the region 5. k. 3fm 1; (iv) in complex nuclei, in agreement with the results
shown in Table[d, the (11) state (odd relative orbital momenta) plays a dominant
role, both in the independent particle model and in many-body appraches. These
observations are useful for understanding the material presead in the next Section.

4.5. The momentum distribution of nuclei vs the deuteron
momentum distributions

It would appear from Fig. B(b), that at k & 1:5 2fm ! the proton momentum
distribution in A 3 nuclei would be nothing but the rescaled deuteron momentum
distribution. Such a possibility has been quantitatively investigated in Ref%? by
plotting the ratio R\_, (k) = n (k)=np (k). The results are presented in Fig[94),
which shows the proton ratio for A 3, and in Fig.[d(b), which shows the proton

Fig. 9. (a): the ratio of the proton momentum distribution in nucleus A , nx (k), to the deuteron
momentum distribution  np (k). In isoscalar nuclei RK:D (k) = Rip (k) Ra=p (k), whereas in

3He RK:D (k) 8 n} (k)=np (k). (b): the proton and neutron ratios in 3He. Wave functions as in
Fig. B] (Figure reprinted from. 42 Copyright (2013) by the American Physical Society)

and neutron ratios in 3He. The linear scale demonstrates that, starting fromk &
2fm 1, the ratio RQZD (k) is not constant but appreciably increases withk. The
reasons for such an increase are manyfold, namef¥:(i) the role of the states (ST) =
(01) and (11), that are missing in the deuteron; (ii) the c.m. motion of a pair in a
nucleus, that, unlike what happens in the deuteron, is not zero; (iii) the di erent
role played by pp and pn SRCs. In order to better understand the last point, let us
analyze in detail the proton and neutron momentum distributions in 3He.

4.6. The nucleon momentum distributions in 3He and 3H

The di erent behavior of the proton and neutron momentum ratios shown in Fig.
[B(a), can be understood in terms of SRC as follow4? A pn pair can be either in
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ISOSCALAR 3He (sT)
n? (k) =n" (k) n? (k) =n" (k) ®--O

Fig. 10. The number of pn and pp pairs a ecting the high-momentum components of the nucleon
momentum distributions. In isoscalar nuclei nP(k) = n"(k), whereas in non isoscalar nuclei, e.g.
in 3He, nP(k) 6 n" (k) because the proton and the neutron are correlated with die rent nucleon
pairs.(Full (open) dots denotes protons(neutrons).

Fig. 11. The spjn-isospin components of the proton ( Left ) and neutron ( Right ) ratios

nN (K)=np (k) = &t ng; T (k)=np (k) in 3He. Wave functions from Ref. B2 (Figure reprinted
from.42! Copyright (2013) by the American Physical Society).

deuteron-like (10) state with probability 3 =4, or in (01) state, with probability 1 =4;
a pp (nn) pair can only be in (01) state with probability one. EAS illustrated in the
cartoon in Fig [IT, in *He the proton momentum distribution is a ected by SRCs
acting in one pn and one pp pairs; in the former pair the deuteron-like state (10)
is three times larger than the (01) state, whereas in the latter pairthe deuteron-
like state is totally missing; on the contrary, the neutron distributio n is a ected
by SRCs acting in two proton-neutron pairs, with a pronounced dominance of the
deuteron-like state (10); therefore, one expects that aroundk ' 2fm 1, wherenp
SRCs dominate overpp SRCs®3%%! nI=n, ' 2 and n}=np ' 1, which is indeed
con rmed by the results presented in Fig.[I1, where the various sim-isospin ratios
R/T;E,ST)(k) = ny T (k)=np (k) are presented.

aThis is strictly true in the independent particle picture. S  RCs change these probability according
to the results presented in Table 1 Wwithout, however, aecti ng the correctness of our argument.



June 27, 2013 0:8 WSPC/INSTRUCTION FILE Review_|IMPE

Universality of nucleon-nucleon short-range correlation s and nucleon momentum distributions 19

4.7. Experimental evidence of high-momentum components in the
one-body momentum distributions

As already pointed out in Section[1, it is not the aim of the present revew to discuss
the experimental investigation and the evidence of SRCs, in particlar, how the

n(k) (fm?)

nuclear
matter

nlk) {fm%)

107 F

10° e 10° : 10

k) k(i) k gm)

Fig. 12. The momentum distributions of several nuclei and nu clear matter extracted from the
analysis of inclusive, A(e;e%)X (open squares), and exclusive, A(e;e%p)X (full and open triangles),
cross sections. The full lines represent the results of many -body calculations, as in the previous
Figures, and the dashed lines are MF predictions. For refere nces to the original experimental and
theoretical papers see Ref28(Figure reprinted from. 58! Copyright (1991) by Elsevier)

information on momentum distributions could be extracted from di e rent types of
measured cross sections which might be strongly a ected by comgiéive e ects, like
the nal state interaction (FSI) and meson exchange currents MEC). Nonetheless
it is useful mentioning some established evidence of high-momentumomponents
in na (k). To this end, we show in Fig.[I2 the one-body momentum distributiors
extracted from the exclusive, A(e;ép)X, and inclusive, A(e; &)X, reactions, the
latter analyzed in terms of y-scaling®® The y-scaling analysis produce large errors,
but even in the worst case, it unambiguously demonstrates the doimnant role played
by SRCs in the high-momentum part of the one-body momentum distibutions.
Other evidence of SRCs from inclusive electron scattering is provid&by the ratio
of inclusive cross sections, e.g.a (Xgj ; Q%)= p (Xg;j ; Q?), plotted vs. the Bjorken



June 27, 2013 0:8 WSPC/INSTRUCTION FILE Review_|IMPE

20 M. Alvioli et al.

scaling variablexg; (see Re®=% and the review pape¥).

5. Two-body momentum distributions

Introducing the relative and ¢c.m. momenta,
slki ko) K Kem =kitke K (36)

the two-body momentum distribution is de ned as follows
n(kl;kz)z= nk;K)=nk;K; )=

= ﬁ drdr%dRdr% (K R RYg ik 1% (. rop.po. (37
where (r;r®R;R% is the non-diagonal two-body density (Eq. (I2)), k = jkj,
K = jKjand is the angle between k and K. Three di erent types of two-body
momentum distribution can thus be considered, namely:

Krel =

(1) the relative, nyg (k), and c.m., n¢m: (K), momentum distributions, i.e. Eq. (BY)
integrated over the c.m. and relative momenta, respective%y:

Nrel (K) = n(k;K)dK Nem: (K) = n(k;K)dk; (38)

(2 )3 2 )3
(2) Eq. @D in correspondence oK ..,, = 0, describing back-to-back nucleons, as

in the deuteron (k, = k) :
Z Z

n(k;0) = ﬁ drdr®e KT I grRARC (r;r®R:RY:  (39)
(3) the full Eq. (B7) as a function of k, K and , a quantity that provides a three-
dimensional picture of the two-body momentum distributions.

Hereafter, the two-body momentum distributions for a pair of nucleons N;N> in

spin-isospin state §T) will be denoted by nigt\? (k; K ).

5.1. The momentum distributions N (k) and nem: (K)

Fig. I3(Left ) shows the relative andc.m. momentum distributions in “He obtained
in Ref% whereas Fig.[TBRight ) shows the the relative momentum distributions
for pn pairs in state (ST) = (10) in 2H, 3He, °H, *He and*He from Ref** Both
calculation are ab initio within the VMC method with the AV18 interaction (Ref. ©4)
and the correlated basis approach with the AV® interaction (Ref.44). The inset in
Fig. illustrates the dominance of the tensor force acting inpn pairs: at low
momenta, the ratio nn, (k)=nyp (k) is mostly governed by the ratio of the pn to
pp pairs, ZN=[Z(Z 1)=2] = 2 but starting from k 1:5fm 1, the ratio sharply
increases because of the action of the tensor force in the (10) @hnel of the np pair.
The results exhibited in Fig.[I3 demonstrate the universality of SRCsn few-nucleon
system: at high values ofk, the relative momentum distributions are very similar,
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Fig. 13. (Color online) ( Left ): the two-body momentum distribution of  np and pp pairs in “He,
integrated over the the c.m. (relative) momentum K Q (k q) vs. the relative (c.m.) mo-
mentum (Eq. (38)), with  ng (K) NN (@) and nem: (K) NN (Q). The inset shows the ratios
np (@)= pp (@) @and  np (Q)= pp (Q). (Figure reprinted from. 4/ Copyright (2007) by the American
Physical Society). ( Right ): the same as in Fig. [3{ Left ) for a pairin S=1;T =0 channel in 2H
d, 3He h,3H t, *He and “He . (Figure reprinted from. #4 Copyright (2011) by
the American Physical Society).

thanks to the universality of the correlation hole previously discused in Section
[Z33. The universality of the integrated momentum distributions is conrmed by
the results for A=12, 16 and 40, obtained in Ref#® within the number-conserving
linked-cluster expansion and the AV® NN interaction.

5.2. The momentum distributions N(kre ;K em: =0)

The momentum distribution n(kie ; Ke:m: = 0) is a very important quantity be-
cause, when compared with the deuteron momentum distribution, itcan provide
information on the short-range dynamics of a pair of nucleons in themedium and
possible evidence of medium induced multi-nucleon correlations.

The results for A=3, 4, 6 and 8 nuclei, obtained in Ref>* within the VMC
method using di erent NN interactions plus 3N forces, are shown in kg.[I4, whereas
the results for A=12, 16 and 40, obtained in Ref>® within the number-conserving
linked-cluster expansion and the AV® NN interaction, are shown in Fig. I53. The
results for both few-nucleon systems and complex nuclei clearly shv that: (i)
the 3NF, which is essential to produce the correct binding energy fofew-nucleon
systems, appears to have tiny e ects on the high-momentum compnents (Fig.
[T4(Left )), which is not surprising, in view of its long-range character; (ii) the uni-
versality of the relative momentum distributions, resulting from the universality of
SRCs, is evident from Fig.[T4Right ) and Fig. I5(a): inthe range 3 A 40 and
k 2fm ! aclear A-independence of the high relative-momentum behavior is ex
hibited; (iii) the results presented in Figs.[I3(@) and [I3(b) demonstrate the tensor
dominance both in few-nucleon systems and complex nuclei; (iv) Fid. 4(Left ) and
[I8() shows that at high values of ke the momentum distributions of deuteron
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ST © — AVI18/UIX ‘He
16°E v === AVE' ‘He
4 AV4' “He
= AVI8 H

T T

q (fm™)

Fig. 14. (Color online) ( Left ): the two-body momentum distributions of back-to-back nuc  leons
(Eq. (B9) with Kem: Q = 0 and n(k;0) (9;Q = 0)) for np pairs (lines) and pp pairs
(symbols) in 4He, calculated with VMC wave functions and di erent NN inter actions: AV18 plus
UIX three nucleon interaction, 28! Av6 @ and Av4 @ interactions. The dotted lines denote the S and
D waves of the deuteron corresponding to the AV18 interactio n. (Right ): the same as in (Left )
but for 3He, “He, 8Li, and 8Be. AV18 interaction.(Figure reprinted from. =4 Copyright (2007) by
the American Physical Society)

Fig. 15. (Color online) ( a): the two-nucleon momentum distribution in ~ 12C, 160 and 4% Ca for back-
to-back nucleons (Eq. (89)) calculated within the number-c  onserving linked-cluster expansion of
Ref 1l with AV8' interaction. ( b): the back-to-back pn and pp momentum distributions in  160.
The inset shows the ratio of the total momentum distribution s to the distributions obtained by
disregarding the tensor force, i.e. Rpn = npn (Krel ; Kem: = 0) :ngf\‘”"a' (krel ;Kem: = 0). All
curves are normalization to the number of NN pair. (Figure re  printed from. 22 Copyright (2008)
by the American Physical Society)

and complex nucleus are very similar. This similarity is better illustrated in the
next Section where the ratioRa=p (K; Kem: =0) = nR" (Krel ; Kem: = 0)=np (K) is
presented for few-nucleon systems and complex nuclei.
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5.3. The momentum distributions Nn(krel ;K cm: ;)

The knowledge ofn(kre ; Ke:m: ; ) provides information on the three-dimensional
picture of the two-nucleon momentum distribution. In this connection, it has to
be stressed that the independence ofi(ke ;Kem:; ) upon the angle is ev-
idence of the factorization of the distributions in variables ko and K¢, 22860
i.e. "NN (Krel;Kem ;) ) (Kret) (Kem.) where, for the time being, (k) and
(K ¢.m.) denote two generic functions ofk,e; and K¢.,. . The pn and pp two-body
momentum distributions n(Kre ; Kcem: ;) in few-nucleon systems® and complex
nucle®® have been calculated with realistic wave functions. The results forPHe
and “He obtained with ab initio wave functions’®® corresponding to the AV 18
and AV 8% interactions are shown in Fig.[I6vs. K|, in correspondence of several
values of K. and two values of . The results for O are shown in Fig.[17.
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Fig. 16. (Color online) ( Left ): the two-body momentum distributions of  pn (a) and pp (b) pairs in
3He normalized to unity, vs. the relative momentum k¢ , for xed values of the c.m. momentum
K em: and two orientations of the momenta, namely ke jjK ¢:m: (broken curves) and kg ? Kcem:
(symbols). The continuous curves for the pn pair represents the Qeuteron momentum distribution
rescaled by the c.m. momentum distribution n2f: (Kem: ) = P (Kre ;K em: ) dkrel  (Se€ Eq.
@D). 3He wave function from Ref. B% and AV 18 interaction. ® (Right ): the same as in (Left ) but
for “He. Correlated variational wave function from BY and AV 8° interaction. &(Figure reprinted
from.®2 Copyright (2012) by the American Physical Society)
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Fig. 17. The two-body proton-neutron momentum distributio ns (Eq. (B7)) in 180 for three values
of Kem: and = 0 (symbols). The continuous lines represent the deute  ron momentum distri-
butions rescaled by the c.m. momentum distribution of the pa ir calculated at the proper value
of Kem (see Fig. [I8(b)). Wave function from the number-conserved linked-cluste r expansion of
Ref21 Av8 O NN interaction. (Figure adapted from. 5 Copyright (2008) by the American Physical
Society)

Apart from a di erent overall normalization, the results for few-n ucleon systems at

Fig. 18. (a): the ratio of the pn momentum distributions for back-to-back nucleons
NP" (Keer ; K em. =0) in 3He,*He, and 80 shown in Figs. [6]and [7] to the deuteron momentum
distribution np (ke ) (full lines). The di erent magnitudes of the ratio for the t hree nuclei is due
to the di erent values of the c.m. momentum distribution at Kem. =0 shown in Fig.18( b). (b):
the ¢.m. momentum distribution in  3He, “He, and 1%0. (Figure reprinted from. “2/68) Copyright
(2012,2013) by the American Physical Society)

K cm. = 0 fully agree with the ones of Ref>* The peculiar and systematic results of
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these calculations can be summarized as follows: (i) with increasing Waes of the
c.m. momentum, the high relative momentum part of the distributions strongly de-
creases; (i) starting from a given value ok, beingkye ' 1:5fm *whenK¢m =0
and assuming increasing values with increasing values &f. . , the pn distribution
changes its slope and becomes close to the deuteron distributionn Iparticular, in
the region (ke & 2fm Y Kem . 1fm 1), nP" becomes -independenE], assuming
the form nP" (Keei; Kem.; ) ' No (Ke)NET, (Kem.), where np (Krer) is the deuteron
momentum distribution, and nB%, (K¢m. ) describes the c.m. motion of the pair
and provides the A-dependence ohP" (kr; Kcom.). The factorized property, that
charaterizes also complex nuclei, as shown in the case ¥fO in Fig. 7], represents
a rigorous many-body demonstration that when the relative momertum of the pn
pair is high, and, at the same time, the c.m. momentum is low, the two-lmdy mo-
mentum distribution factorizes; (iii) when the c¢.m. momentum is of the same order
of the (high) relative momentum, more than two particles can be locdly corre-
lated, with a resulting strong dependence upon the angle and the l@aking down
of factorization, as clearly appears in Fig.[I6 forK.m = 3 fm 1. These feature
are common to both few-nucleon systems and complex nuclei. A bedt evidence
on the factorized behavior of the two-body momentum distributions for pn pairs
can be obtained by considering the ratioRP" (k) = nP" (ke ; 0)=np (Kre), Which is
presented in Fig.[I8@). The constant value exhibited by the ratio at kr & 1:5
fm ! is unquestionable evidence that in this region the dependence updue of the
two-body momentum distribution nP" (k. ; 0) is the same as in the deuteron. As for
the di erent magnitudes of the ratio for di erent nuclei, this is gove rned by the c.m.
motion distribution of the pair, which is illustrated in Fig. 181 b). It can be seen that
the di erence in magnitude of the ratios in the region ki & 1:5 fm ! is governed
by exactly the di erence between the values of thec.m. momentum distributions
at K¢m. =0. The more rapid fall o of the c.m. momentum distributions of 3He, is
due to the weak binding of this nucleus, leading, with respect to the*He and 10,
to the wider separation of the curves corresponding to various vaes ofK .. pre-
sented in Figs.[I6 andIB4). For nuclei with A 4andK¢m, . 1.0 1:5fm 1, the
c.m. distribution can be associated to the average kinetic energg T > gy of a pair
moving in the mean eld with a Gaussian distribution , nc.m: (K) / expf K 2.9
with  =32<K 2, >]1=[3(A 1]F4A 2)my <Tsw >] as suggested in
Ref%? and in agreement with the experimental nding®® for 12C.

6. Nucleon momentum distributions, spectral functions and SRCs

Although the momentum distribution is not an observable, it is undisputable that

it can play a role in particular scattering processes, that, at the sane time, can
also be inuenced by other phenomena which could mask the e ects gnerated
by the momentum distributions. To clarify this point, let us consider t he process

bSuch an independence has been checked in a wide range of angles
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A(e;@N)X in the Plane Wave Impulse Approximation (PWIA), i.e. when, in the

initial state, an electron is impinging on nucleus A and, in the nal state, the
scattered electron and a nucleon N are detected in coincidence artie nucleus
X = (A 1)is left in the energy state EL 1, in the simpli ed assumption that

the detected nucleon was knocked out by a direct interaction N and left the
nucleus with momentum py without interacting with the medium, the measurable

missing momentumpy, = q pn and energyEq, = Tn Ta 1 represent,
respectively, the momentum of the nucleon before interactiork; = pmy and the
intrinsic excitation energy of E, ; of (A 1). As is well known, even within such
a severe approximation the cross section of the process is not gortional to the

momentum distribution but to another quantity, the Spectral Fun ction Sa(ki; E)

representing the joint probability that when a nucleon with momentum k; = pn,

is removed instantaneously from the ground state of the nucleus Athe nucleus
(A 1)isleftin the excited state E, ;= E Emin , whereE is the removal energy
andEnin = Ma 1+ my  Ma. The spectral function has the following form (from
now-on spin indexes will be omitted for ease of presentation)

Sa(ki;E)=< fjaf, (E W+ Ea)a,j §>=
z 4
X ) Y 2
= eKiligry A Y (frgy 1) A(rifrga 1) dry (E EL [+ Ea)
f i=2
Sgr0) (K1, Egr(0)) + Sex(z) (K1; Eexay) (40)

where E,& 1= Ea 1+ E, 4, Ea and Ex 1 denote the ground-state energies of
initial and nal nuclei, and aykl(akl) is a creation (annihilation) operator. The two
contributions, as in the case of the momentum distributions (cf. Ecg. (Z8) and (Z8)),
arise from dierent nal states of the system (A 1), with Sg, (1) (k1; E) governed
by SRCs. Summing over the complete set of nal states in Eq.[(40) itis easy to
obtain the momentum sum rule

1
na(ky) = . Sa(ki;E)dE: (41)

Eqg. @I) clearly shows that the extraction of the momentum distribution from the
experimental data implies a di cult integration over the full range of discrete and
continuum excitation spectra of the residual nucleus A 1), up to very high values
of E, ;, particularly in the interesting region of high values of k (see Ref%52),
Moreover, exact many-body spectral functions exist only for tre three-nucleon sys-
tem 52641 (the complete set of nal state is known), and for nuclear matter,5565
whereas for complex nuclei only model spectral functions have lea developed, ei-
ther within the local density approximation, ®” or within the convolution model of
Ref4® The latter, which is aimed at describing the spectral function in the region
of 2N SRCs, naturally arises from the behavior of the high-momentm part of the
two-body momentum distributions described in the previous Sectios. As a matter
of fact, we have seen that at large values ok, and small values ofK .. the



June 27, 2013 0:8 WSPC/INSTRUCTION FILE Review_|IMPE

Universality of nucleon-nucleon short-range correlation s and nucleon momentum distributions 27

following relation holds

nP" (Krel ; Kem: ) ! nP" (Kret ; Kem:) " no (Krel )Nem: (Kem: ): (42)

From momentum conservation,k; + ko  Kem: =0, Kreg = ki Kem: =2, one has
Z K Z

na(k) ' np(jks ;’"' DNem: (Kem: ) dK cm: = Sa(ky;E)dE; (43)

and assuming that the high values of the excitation energyE, , are essentially
given by the relative motion of nucleon "2" and nucleus (A  2), one obtains

VA N

. KN
Sa(ki;E) " np(jky ;m' DN (Kem: YK e
[
A 2 A 2
th 2mN(A 1) 1 A cm: ) ( )

where Et(ﬁ) is the two-body threshold. Eq. @4) has been rst obtained in Ref.4?

within several phenomenological assumptions, whose physical aagctness are now
justi ed by the many-body calculation of the momentum distribution s. A convolu-

tion formula for the correlated part of the spectral function has also been shown to
result from Brueckner-Bethe-Goldstone theory of nuclear mater, where the spectral
function corresponding to the nucleon self-energM (k;E) = V(k;S)+ iW (k; E) is

obtained from the single particle Green functionG in the following form8

W (k; E)

( E k2=2my V(KE))*+ W(k E)2 (49)

Sa(k;E) = lIm Gk;E) = 1

which, at E + Ky iV (k; BE)j;jW (k; E)j, can be approximated by the following

X i 2my
convolution integral®?

z

Sa(ky; E) = i CISKﬁnrel (jk1 }K c:m: j)nF'G- (Kem:)
s 16 (2 )3 2 m: cm: m:
1
E Et(ﬁr) m(K em K1)? (46)

Here is the density of nuclear matter,n£.S. the Fermi gas distribution and n, the
spin-isospin averaged two-body relative momentum distribution in nwclear matter.
Eq. @8) in the region E ' Efﬁr) + k?2=(2my ) agrees very well with the exact BBG
spectral function, as shown in Fig.[I9&). Further con rmation of the convolution
model, resulting from the factorization property of n(ke ; K ¢:m: ), has been recently
provided®” by the analysis of the behavior ofab initio three-nucleon ground-state
wave functions ( in momentum space, by considering the following ratio

j o(Kem;Krel )JZ
R = - = 47
J o(Kem =0;Keer)j? (“7)
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vs. jkre j at constant values of jK.m: j . If factorization of ¢ holds, i.e.
i o(Kem;Krel )JZ " Nem: (Kem: )Nrel (Krel ) the ratio becomes

Nem: (Kem: )
Nem: (Kem: = 0)
It can be seen from Fig[I®b) that factorization indeed occurs starting, as expected,

R

= constant: (48)

1073 T T T r T T T T T T T m|
exact © strength functions i
- convolution - - - -
—-
! -
=
=
—_ oao-e'o'e‘maﬁ_o ) e T iimmeee
~ 1074 < o oo - -
= e o BT O e O r ]
A 1 - o o
e k=3 fm & 9
C L o & & e L ]
4 %35 P o
,
.4 D T T 1
°, Q7 4
2 ,
L o/
10-5 1 " L —
0 100 300 400

200
E ( MeV )

Fig. 19. (Left ): the exact BBG nuclear matter spectral function ( exact) vs E in correspondence
of three values of k compared with the BBG convolution model E  q.(#&)( convolution ). (Figure
reprinted from. B2 Copyright (1996) by Elsevier). ( Right ): the ratio R (Eq. (4Zlin  3He. Three-
nucleon wave functions from Ref. 8% Av18 interaction. 2(Figure reprinted from. €% Copyright (2011)
by Springer & Verlag).

at a value ofk;e which increases with increasing values of ¢.n,: , in agreement with
the results presented in Fig.[I6. The magnitudes of the curves in FigI9(b) agree
with the behavior of n¢.m: (Ke:m: ) presented in Fig.[18.

The most interesting quantity, as far as SRCs are concerned, is & two-nucleon
momentum distributions, that in PWIA might in principle be extracted f rom the
A(e; €2N)X process, when two nucleons are knocked out from the nucleus A dn
are detected with momentap; and p in coincidence with the scattered electron,
with the nucleus (A  2) left in the energy state EL ,. The measurable missing
momentum and energy are in this case th@, = q p1 p2andEq = To. Tp,
Ta 2= E5 ,. Assuming that the virtual photon has interacted with one nucleon
(the fast one) of a correlated pair, with the second nucleon (the ecoiling one) being
emitted because of momentum conservation, the cross section willepend upon the
two-nucleon spectral function

SN kikaiE) =< ojal,al, (B A+ Ea)agaai 0>=
X

e Kt iKaTogy gron A2 (Frga 2)i ofrairafrga )i
f

(E Ep »*Ea) (49)
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Summing over the nal stat%s of (A 2) the two-nucleon momentum sum rule
nmlNz(kl;kZ)z dES/'.\\llNz(kl;kZ;E): N(Krel ; Kem: ) (50)

is obtained. The two-nucleon Spectral Functions has been obtairge within many
body theories in Refs™ for nite nuclei, in Ref. ' for nuclear matter, and in Ref!’2
for 3Heﬁ. In the past, the processA(e; N1N,)X has been intensively investigated
theoretically (see e.g'®™ and references therein quoted) and experimentally (see
e.g'™ and references therein quoted) but the experimental data werglagued by
MEC and FSI and other competing e ects and no conclusive quantitaive infor-
mation on SRCs could be obtained (for a critical discussion of this tojt se&).
Recently, however, high moment transfer experiments have beeperformed on'?C
and *HeSLIBI8! that allowed one to detect a "fast" proton with momentum py,
identi ed as the member of a correlated pair kicked out by the high erergy projec-
tile, and a "slow" (or "recoil") nucleon (a proton or a neutron) with m omentum p,
assumed to be the one emitted by momentum conservation in the coelated pair.
By assuming the validity of the PWIA, which implies that p; = k1 + g, p2 = k>
and Ppnis = (k1 + k) = Kem:, it is possible to reconstruct the momentumk ;
that the struck nucleon had before interaction; by plotting the correlation between
the value ofjp,j and the angle betweerk; and p» , it was found that whereas recoil-
ing nucleons with momentum of the order or less than the Fermi mometum were
emitted isotropically, nucleons with momentump, ' 2 2:5fm ! were emitted in
a backward cone with respect to the direction ofk;, in agreement with the picture
of the absorption of the virtual photon by a nucleon with a c.m. distribution in 2C
of the type ne.m: (K) / exp[ K2,.=2 2Jwith _=7:26 0:086fm ! in agreement
with the prediction of Ref.,*¥ namely = 1= 2 = 7:1fm ! (see Sectioi5R).
Furthermore by comparing with the same apparatus and kinematicsthe yield of
12C(e; &p)X with the yield of 2C(e; pn)X it has been possible to obtain infor-
mation about the ratio of pn to pp correlated pairs. A detailed discussion of these
experiments and their interpretation is given in Ref2

7. Conclusions

Ab initio many-body calculations performed in terms of realistic bare two-neleon
interactions show that two-nucleon short-range correlations (N SRCs), character-
ized by the presence of a correlation hole in the two-nucleon densityn nuclei,
exhibit a universal character, manifesting itself in several A-indendent features
of nucleon momentum distributions. As a matter of fact, the calculaed two-nucleon
relative density displays a correlation hole which is essentially indepereht of the
mass of the nucleus, a feature that demonstrates that two-nueon motion at short
relative distances is practically una ected by the motion of nearby nucleons. This

¢ Eq. (B9) has been called vector spectral function in Ref.’2' whereas a similar quantity has been
called decay function in Ref.2
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universal behavior in coordinate space re ects itself in peculiar uniersal features of
one-nucleon,na (jkj), and two-nucleon, nN N2 (jk e j; jK ¢:m: j; ), momentum distri-
butions. Concerningna (jkj), 2N SRCs increase the high-momentum part by orders
of magnitude with respect to MF predictions; as for nN+Nz(jk e j; jK cm: j; ), par-
ticularly worth being stressed again is the following main feature chaacterizing the
motion of a pn pair in medium: in the SRCs region, where 2. k, . 5fm * and,
at the same time,K .. . 1 fm 1, the relative and c.m. motions of the pair are de-
coupled, with the former described by a deuteron-like momentum digibution, and
the latter, governing the A dependence of the motion, described yp a momentum
distribution linked to the average value of the MF kinetic energy. Sud a decoupling
of the relative and c.m. momenta have been theoretically justi ed by many-body
calculations which predict factorization of the nuclear wave function at short inter-
nucleon distances or, equivalently, at high values ok, and low values ofK ¢.np: .
Some aspects of this picture have already been partially con rmed § experiments
providing evidence on the high-momentum content of the one-nuclen momentum
distribution, by the experimental behavior of the inclusive electron-nucleus cross
section ratios and, eventually, by the measurement of the perceaage ratio of pn to
pp correlated pairs in “*He and *>C. Much work however remains to be done in order
to investigate the three-dimensional structure of the two-nucleon momentum distri-
butions nNNz(jke j; jK ¢:m: j; ), with particular attention to its  ¢.m. dependence
in the SRCs region, as well as to its structure in the region where bdt k¢ and
Kem: are large, characterized by the breaking down of c.m and relative mmenta
factorization due to the expected dominant role of many-nucleon Cs.

Unveiling the correlation structure of nuclei is a fundamental task of nuclear
physics, for by this way information on the basic in-medium NN interadion can
be obtained. Moreover, it should also be stressed that, recentlya non trivial im-
pact of 2N SRCs on dierent elds, such as high-energy hadron-naleus®3 and
nucleus-nucleus scattering? deep inelastic scattering® and the equation of state
of unconventional nuclear matter4® has been demonstrated.
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